Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¿Íµ¿³»¿¡ Á¶»çµÈ ¿­ÀÇ Àüµµ¾ç»ó¿¡ °üÇÑ ¿¬±¸

A STUY FOR THERMAL CONDUCTIVITY OF IRRADIATED CAVITY

´ëÇѼҾÆÄ¡°úÇÐȸÁö 1998³â 25±Ç 3È£ p.583 ~ 597
¼Ò¼Ó »ó¼¼Á¤º¸
¹éº´ÁÖ/Byeong-Ju Bailk ±èÀç°ï/Çã¼±/À̵Îö/À±ÇöµÎ/Jae-Gon Kim/Sun Hur/Du-Cheol Lee/Hyun-Du Yun

Abstract

°á·Ð
·¹ÀÌÀú¸¦ ÀÌ¿ëÇÑ ¿Íµ¿Çü¼º½Ã ¹ß»ýÇÏ´Â ¿­¿¡ ÀÇÇÑ Ä¡¾Æ ³»ºÎÀÇ ¿Âµµ ºÐÆ÷¸¦ Æò°¡ÇÏ¿´´Ù.
»ç¿ëµÈ Ä¡¾ÆÀÇ ¸ðµ¨Àº ÇÏ¾Ç Á¦ 1 ´ë±¸Ä¡·Î ¹ý¶ûÁú, »ó¾ÆÁú, Ä¡¼öÀÇ 3¿µ¿ªÀ¸·Î ±¸¼ºÇÏ¿´À¸¸ç.
Ãà´ëĪÇü»óÀ» °í·ÁÇÑ 2Â÷¿ø ¿­ÀüµµÇؼ®À» ¿­À¯µ¿Çؼ®¿ë ÇÁ·Î±×·¥ÀÎ 'FLUENT V.4.3'À» »ç
¿ëÇÏ¿© ±× Çظ¦ ±¸ÇÏ¿´´Ù. ¿Íµ¿ÀÇ ±íÀ̸¦ º¯È­½ÃÄÑ ¸ðµ¨ A, ¸ðµ¨ B,¸ðµ¨ C¸¦ Çü¼ºÇÑÈÄ ¿Íµ¿
±âÀú¸é¿¡ ¿­À¯¼Ó 30J, 100J, 300J/cm2·Î 2ÃÊ µ¿¾È ÁýÁß Á¶»çÇÑ ÈÄ 10ÃÊ°£ Ä¡
¾Æ ³»ºÎ·Î ÀüÆĵǴ °úÁ¤À» ½Ã°£¿¡ µû¶ó ºÐ¼®ÇÏ¿´°í, Á¶»çµÈ ¿­ÀÇ Å©±â, ÁýÁß Á¶»çºÎÀÇ À§Ä¡
º¯È­, Á¶»ç ½Ã°£À» º¯È­ÇÏ¿© ºÐ¼®ÇÏ¿´À¸¸ç ±× °á°ú´Â ´ÙÀ½°ú °°´Ù.
1. ¿­À¯¼Ó 300J/cm2s·Î Á¶»çµÈ ¿­ ¿¡³ÊÁö¿¡ ÀÇÇØ Á¶»ç Ç¥¸éÀÇ ¿Âµµ´Â 1ÃÊ ÀÌ
³»¿¡ ¼ø°£ÀûÀ¸·Î ±Þ°ÝÇÑ ¿Âµµ »ó½ÂÀÌ ÀÌ·ç¾îÁö¸ç ±×ÈÄ Á¶»ç½Ã°£ÀÌ Áö¼ÓµÊ¿¡ µû¶ó ºñ±³Àû ¿Ï
¸¸ÇÑ »ó½ÂÀ» ÇÑ´Ù. ÀÌ ¼ø°£ÀûÀ¸·Î »ó½ÂµÈ Ç¥¸éÀÇ ¿Âµµ´Â 1,370¡É·Î¼­ ¿Íµ¿ Çü¼ºÀÌ °¡´ÉÇϸç,
¿­ÀÇ Á¶»ç°¡ Áß´ÜµÈ ÈÄ¿¡ Ç¥¸éÀ¸·ÎºÎÅÍÀÇ ¿­Àº Àüµµ¿¡ ÀÇÇØ »ó¾ÆÁú, Ä¡¼ö ºÎÀ§±îÁö È®»êµÇ
¾î ÃÖ´ë ¿Âµµ¸¦ Çü¼ºÇÏ°í ÀÌ ÃÖ´ë ¿Âµµ´Â ½Ã°£ÀÌ ÁøÇàµÊ¿¡µû¶ó ³Ã°¢µÇ¾î 10ÃÊÀ̳»¿¡ ¼Ò¸êµÈ
´Ù.
2. ¿Íµ¿ Çü¼ºÀ» À§Çؼ­ 300J/cm2s ÀÌ»óÀÇ ¿­ÀÌ ÇÊ¿äÇÒ °ÍÀ¸·Î ÆǴܵǸç, ¿Í
µ¿ ±íÀÌ°¡ 2.32mmÀÇ ¸ðµ¨¿¡ ´ëÇؼ­´Â Ä¡¼öºÎ¿¡ ¹ÌÄ¡´Â ¿­Àû¼Õ»óÀ» ¹«½ÃÇÒ ¼ö ÀÖÀ¸³ª, ±×
ÀÌ»ó ±íÀÌÀÇ ¿Íµ¿ Çü¼º½Ã ÁÖÀǸ¦ ¿äÇÑ´Ù.
3. ¸ðµ¨ ³»ºÎÀÇ ÃÖ´ë ¿Âµµ´Â ¼öÁ÷ ¹æÇâÀ¸·Î ¹Ì¼¼ÇÑ ±íÀÌ º¯È­¿¡ µû¶ó ¸Å¿ì ½ÉÇÑ ¿Âµµ º¯È­
¸¦ ÀÏÀ¸Å²´Ù. Áï ±íÀÌ 3.52mmÀÇ ¿Íµ¿ Çü¼º½Ã 300J/§¯2sÀÇ ¿­À» Á¶»ç½ÃÄ×À»¶§
Ä¡¼ö¿Í »ó¾ÆÁúÀÇ °æ°è¸é¿¡¼­ »ó¾ÆÁúÃþÀÇ 0.5mm ±íÀÌ º¯È­¿¡ ´ëÇؼ­ 71¡ÉÀÇ ¿Âµµ »ó½Â, Ä¡
¼ö³»ÀÇ 0.2mm ¹Ì¼Ò ±æÀÌÀÇ º¯È­¿¡¼­ 15¡ÉÀÇ ¿Âµµ »ó½ÂÀ» ³ªÅ¸³»°í ÀÖ´Ù.
4. µ¿ÀÏÇÑ Á¶»ç·® ¹× Á¶»ç ½Ã°£¿¡ ´ëÇؼ­µµ Ä¡¼ö °¢ ºÎÀ§´Â ¿­ Á¶»ç À§Ä¡¿Í Ä¡¼ö°¡ ±ÙÁ¢µÇ
¾î À־ Ä¡¼ö Á¶Á÷ÀÇ ½ÉÇÑ ¿­Àû ¼Õ»óÀ» ¾ß±âÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÌ ºÎÀ§¿¡¼­ ·¹ÀÌÀú¸¦ »ç¿ë½Ã
¿ì¼±ÀûÀ¸·Î °íÂûµÇ¾î¾ß ÇÑ´Ù.
5. Ä¡¼ö³» ¿Âµµ´Â Á¶»ç ¿¡³ÊÁö°¡ Ŭ¼ö·Ï, Á¶»ç ½Ã°£ÀÌ ±æ¼ö·Ï ´õ ¸¹ÀÌ »ó½ÂµÈ´Ù
#ÃÊ·Ï#
The purpose of this study was to evaluate temperature change occurred in enamel,
dentin and pulp due to the heat from cavity prepration with laser. We made three
madels had different cavity depth : cavity depth of model A was 3.52mm, model B was
2.32mm, model C was 1.16mm. We irradiated cavity base with thermal capacity of 30J,
100J, 300J/cm2s during few seconds and studied the change of temperature
in tooth during 10 seconds, and estimated change of thermal capacity by different
irradiated site and exposure time. At 300J/cm2s irradiation for 2 seconds,
the temperature of irradiated surface was elevated fast according to irradiated thermal
energy during 1 second. In proportion to continuous exposure time, temperature elevated
slowly. The surface temperature was 1370¡É. After discontinue of thermal irradiation, the
heat of irradiated surface was diffused in dentin and pulp and the greatest temperature
was made. The greatest temperature was disappeared within 10 seconds. The greatest
temperature of the inner part of model brought about very severe change by different
depth. Temperature in pulp was raised by the greater irradiated energy density and
exposure time.

Å°¿öµå

thermal conductivity; laser; thermal temperature; cavity depth;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI